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Graphs – Depth First Search
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Graph Search Algorithms
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Outcomes

Ø By understanding this lecture, you should be able to:

q Label a graph according to the order in which vertices are 
discovered, explored from and finished in a depth-first search.

q Classify edges of the depth-first search as tree edges, back 
edges, forward edges and cross edges

q Implement depth-first search

q Demonstrate simple applications of depth-first search
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Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications
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Depth First Search (DFS)

Ø Idea:

q Continue searching “deeper” into the graph, until we get 
stuck. 

q If all the edges leaving v have been explored we “backtrack” 
to the vertex from which v was discovered.

q Analogous to Euler tour for trees

Ø Used to help solve many graph problems, including

q Identifying nodes that are reachable from a specific node v

q Detecting cycles

q Extracting strongly connected components

q Topological sorts
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Depth-First Search
Ø The DFS algorithm is 

similar to a classic 
strategy for exploring a 
maze
q We mark each 

intersection, corner and 
dead end (vertex) visited

q We mark each corridor 
(edge ) traversed

q We keep track of the path 
back to the entrance 
(start vertex) by means of 
a rope (recursion stack)
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Depth-First Search

Ø Explore every edge, starting from different vertices if necessary.

Ø As soon as vertex discovered, explore from it.

Ø Keep track of progress by colouring vertices:
q Black:  undiscovered vertices

q Red:  discovered, but not finished (still exploring from it)

q Gray: finished (Discovered everything reachable from it).

Graph ( , ) (directed or In undirectep : )t du   G V E=
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DFS Example on Undirected Graph
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Example (cont.)
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DFS Algorithm Pattern

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

for each vertex u∈V [G] 
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)
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DFS Algorithm Pattern

  

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
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Properties of DFS

Property 1
DFS-Visit(u) visits all the 
vertices and edges in the 
connected component of u

Property 2
The discovery edges 
labeled by DFS-Visit(u) 
form a spanning tree of the 
connected component of u

DB

A

C

E
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DFS Algorithm Pattern

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

for each vertex u∈V [G] 
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

  

total work 
=  θ(V )
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DFS Algorithm Pattern

  

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
  

total work 
=  |Adj[v]|

v∈V
∑ = θ(E)

  

Thus running time = θ(V + E)
(assuming adjacency list structure)
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Variants of Depth-First Search

Ø In addition to, or instead of labeling vertices with colours, they can be 
labeled with discovery and finishing times.

Ø ‘Time’ is an integer that is incremented whenever a vertex changes state

q from unexplored to discovered

q from discovered to finished

Ø These discovery and finishing times can then be used to solve other 
graph problems (e.g., computing strongly-connected components)

Graph ( , ) (directed or In undirectep : )t du   G V E=

2 timestamps on each vertex:
  [ ] discovery time.
  [ ] finishing tim

Output
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DFS Algorithm with Discovery and Finish Times

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

time ← 0
for each vertex u∈V [G] 

if color[u] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
time ← time +1
d[u]← time
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
time ← time +1
f [u]← time

DFS Algorithm with Discovery and Finish Times



Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 19 -

Other Variants of Depth-First Search

Ø The DFS Pattern can also be used to 
q Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u]

q Label edges in the graph according to their role in the search 

²Discovery tree edges, traversed to an undiscovered vertex

²Forward edges, traversed to a descendent vertex on the current 
spanning tree

²Back edges, traversed to an ancestor vertex on the current 
spanning tree

²Cross edges, traversed to a vertex that has already been 
discovered, but is not an ancestor or a descendent
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End of Lecture

March 27, 2018
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Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications
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DFS
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Classification of Edges in DFS
1. Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if 

v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in 
a depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a 
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same 
depth-first tree, as long as one vertex is not an ancestor of the other.
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Classification of Edges in DFS
1. Tree edges:  Edge (u, v) is a tree edge if v was black when (u, v) traversed.  

Note that d[v] > d[u].

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.       
Note that d[v] < d[u].

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed 
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and 
d[v] < d[u].

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/2
6

2/20

3/19

17/1
8

21/2
4

11/1
6

12/1
5

13/1
4

9/10

5/6

4/7

22/2
3

Classifying edges can help to identify 
properties of the graph, e.g., a graph is 
acyclic iff DFS yields no back edges.
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DFS on Undirected Graphs

Ø In a depth-first search of an undirected graph, every 
edge is either a tree edge or a back edge.

Ø Why?
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DFS on Undirected Graphs
Ø Suppose that (u,v) is a forward edge or a 

cross edge in a DFS of an undirected graph.

Ø (u,v) is a forward edge or a cross edge when v
is already Finished (grey) when accessed from 
u.

Ø This means that all vertices reachable from v
have been explored. 

Ø Since we are currently handling u, u must be red.

Ø Clearly v is reachable from u.

Ø Since the graph is undirected, u must also be 
reachable from v.

Ø Thus u must already have been Finished:  u
must be grey.

Ø Contradiction!

u

v



Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 70 -

Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications
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DFS Application 1:  Path Finding

  

DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack  contains path

colour[u] ←  RED
push u onto stack
if u = z

return TRUE
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
if DFS-Path(v,z,stack)

return TRUE
colour [u]←GRAY
pop u from stack
return FALSE

Ø The DFS pattern can be used to find a path between two given vertices u and z, 
if one exists

Ø We use a stack to keep track of the current path

Ø If the destination vertex z is encountered, we return the path as the contents of 
the stack 
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DFS Application 2:  Cycle Finding

  

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = RED //back edge
return true

else if color[v ] = BLACK
if DFS-Cycle(v)

return true
colour [u]←GRAY
return false

Ø The DFS pattern can be used to determine whether a graph is acyclic. 

Ø If a back edge is encountered, we return true.
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Why must DFS on a graph with a cycle 
generate a back edge?

Ø Suppose that vertex s is in a connected 
component S that contains a cycle C.

Ø Since all vertices in S are reachable from 
s, they will all be visited by a DFS from s.

Ø Let v be the first vertex in C reached by a 
DFS from s.

Ø There are two vertices u and w adjacent 
to v on the cycle C.

Ø wlog, suppose u is explored first.

Ø Since w is reachable from u, w will 
eventually be discovered.

Ø When exploring w’s adjacency list, the 
back-edge (w, v) will be discovered.

s

v

u w
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A4Q2:  Course Prerequisites

Ø In most post-secondary programs, courses have 
prerequisites.

Ø For example, you cannot take EECS 3101 until you have 
passed EECS 2011.

Ø How can we represent such a system of dependencies?

Ø A natural choice is a directed graph.
q Each vertex represents a course

q Each directed edge represents a prerequisite

²A directed edge from Course U to Course V means that Course U 
must be taken before Course V.

2011 3101
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A4Q2:  Course Prerequisites

Ø We also want to be able to find the information for a 
particular course quickly.

Ø The course number provides a convenient key that can 
be used to organize course records in a sorted map, 
implemented as a binary search tree (cf. A3Q1).

Ø Thus it makes sense to represent courses using both a 
sorted map (for efficient access) and a directed graph (to 
represent dependencies).

Ø By storing a reference to the directed graph vertex for a 
course in the sorted map, we can efficiently access  
course dependencies.
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A4Q2:  Course Prerequisites

Sorted Map Directed Graph

Key: 2011
Value:
• Number: 2011
• Name:  “Data Structures”
• Vertex:

2011 3101
(K1,V1)

(K2,V2)

(K3,V3)
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A4Q2:  Course Prerequisites

Ø It is important that the course prerequisite graph be a 
directed acyclic graph (DAG).  Why?

2011 3101

3121
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A4Q2:  Course Prerequisites

Ø In this question, you are provided with a basic 
implementation of a system to represent courses and 
dependencies.

Ø Methods for adding courses and getting prerequisites 
are provided.

Ø You need only write the method for adding a 
prerequisite.

Ø This method will use a depth-first-search algorithm (also 
provided) that can be used to prevent the addition of 
prerequisites that introduce cycles.
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A4Q2:  Implementation using net.datastructures

Ø We use the TreeMap class 
to represent the sorted map 
(cf. A3Q1). 

Sorted Map

Key: 2011
Value:
• Number: 2011
• Name:  “Data Structures”
• Vertex:

(K1,V1)

(K2,V2)

(K3,V3)

Map

AbstractSortedMap

AbstractMap SortedMap

TreeMap

Entry

MapEntry
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A4Q2:  Implementation using net.datastructures
Ø We use the AdjacencyMapGraph class to represent the directed graph. 

Ø This implementation uses ProbeHashMap, a linear probe hash table, to 
represent the incoming and outgoing edges for each vertex.

Directed Graph

2011 3101Graph

AdjacencyMapGraph

Map

AbstractHashMap

AbstractMap

ProbeHashMap
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Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications
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Outcomes

Ø By understanding this lecture, you should be able to:

q Label a graph according to the order in which vertices are 
discovered, explored from and finished in a depth-first search.

q Classify edges of the depth-first search as tree edges, back 
edges, forward edges and cross edges

q Implement depth-first search

q Demonstrate simple applications of depth-first search


