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Outcomes

» By understanding this lecture, you should be able to:

[ Label a graph according to the order in which vertices are
discovered, explored from and finished in a depth-first search.

[ Classify edges of the depth-first search as tree edges, back
edges, forward edges and cross edges

O Implement depth-first search

L Demonstrate simple applications of depth-first search
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Depth First Search (DFS)

> |ldea:

U Continue searching “deeper” into the graph, until we get
stuck.

U If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

[ Analogous to Euler tour for trees

» Used to help solve many graph problems, including
O Identifying nodes that are reachable from a specific node v
U Detecting cycles
U Extracting strongly connected components

U Topological sorts
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Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

1 We mark each
Intersection, corner and
dead end (vertex) visited

 We mark each corridor
(edge ) traversed

L We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)
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Depth-First Search

Input: Graph & = (V,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
» As soon as vertex discovered, explore from it.

» Keep track of progress by colouring vertices:
4 Black: undiscovered vertices
O Red: discovered, but not finished (still exploring from it)

O Gray: finished (Discovered everything reachable from it).
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DFS Example on Undirected Graph

unexplored

being explored

finished

unexplored edge

discovery edge

|| oce

back edge
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Example (cont.)
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DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G]
color[u] = BLACK //initialize vertex
for each vertex u e V[G]
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
If color[v] = BLACK

DFS-Visit(v) /’W

colour[u]l < GRAY
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Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

The discovery edges
labeled by DFS-Visit(u) :
form a spanning tree of the |

connected component of u
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DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G] b
color{u] = BLACK //initialize vertex ~\ total work
for each vertex u e V[G] ) = 6(V)
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //explore edge (u,v)

if color{v] = BLACK | fotal w:;lf ]
DFS-Visit(v) = VEZVI jlv1|=6(E)
colour[u] < GRAY ~

/
Thus running time = 6(V + E) \\
(assuming adjacency list structure)
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Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

O from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph & = (V,E) (directed or undirected)

Output: 2 timestamps on each vertex:

d[v] = discovery time.
f[v]= finishing time. 1<dvl<flv]<2|V|
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DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u € V[G]
color[u] = BLACK //initialize vertex
time < 0
for each vertex u € V[G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u) \%' .
>/ / - \
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DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
time « time +1
d[u] « time
for each v € Adj[u] //explore edge (u,v)

if color[v] = BLACK /ﬁ

DFS-Visit(v)
colour[u]l < GRAY
time « time + 1
flu] < time
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Other Variants of Depth-First Search

» The DFS Pattern can also be used to

L Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list T1[u]

[ Label edges in the graph according to their role in the search
< Discovery tree edges, traversed to an undiscovered vertex

< Forward edges, traversed to a descendent vertex on the current
spanning tree

<> , traversed to an ancestor vertex on the current
spanning tree

<> Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent
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End of Lecture

March 27, 2018
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DFS Discovered
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—» Tree Edges DFS Discovered
— Back Edges Not Finished

1/27] Finished! Stack
<node,# edges>
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Classification of Edges in DFS

1. T'ree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in
a depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.
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Classification of Edges in DFS

1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.
Note that dfv] > d[u].

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.
Note that dfv] < d[u].

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
dfv] < d[u].

1/27

Classifying edges can help to identify 2/20 .
properties of the graph, e.g., a graph is 7 /‘\
N
o) . .

acyclic iff DFS yields no back edges.
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DFS on Undirected Graphs

» |In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

> Why?
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DFS on Undirected Graphs

> Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

> (u,v) is a forward edge or a cross edge when v :
is already Finished (grey) when accessed from -
u.
u

» This means that all vertices reachable from v
have been explored.

» Since we are currently handling u, u must be red. \v

» Clearly v is reachable from u. /

» Since the graph is undirected, u must also be . .
reachable from v.

» Thus u must already have been Finished: u
must be grey.

» Contradiction!

YORSKE ' =ECS 2011 - 69 - Last Updated March 27t, 2018

Prof. J. Elder

IIIIIIIIII



» DFS Algorithm
» DFS Example
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DFS Application 1: Path Finding

» The DFS pattern can be used to find a path between two given vertices u# and z,
if one exists

» We use a stack to keep track of the current path

> If the destination vertex z is encountered, we return the path as the contents of

the stack DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path
colour[u] « RED
push u onto stack
ifu=z
return TRUE
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
if DFS-Path(v, z,stack)
return TRUE

colour[u]l « GRAY
pop u from stack
return FALSE

EECS 2011
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DFS Application 2: Cycle Finding

» The DFS pattern can be used to determine whether a graph is acyclic.

» If a back edge is encountered, we return true.

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
if color[v] = RED //back edge
return true
else if color[v] = BLACK
if DFS-Cycle(v)
return true
colour[u] <« GRAY
return false
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Why must DFS on a graph with a cycle
generate a back edge?

» Suppose that vertex s is in a connected
component S that contains a cycle C. @

» Since all vertices in S are reachable from
S, they will all be visited by a DFS from s.

> Let v be the first vertex in C reached by a
DFS from s.

» There are two vertices u and w adjacent
to v on the cycle C.

» wlog, suppose u is explored first.

» Since wis reachable from u, w will
eventually be discovered.

» When exploring w's adjacency list, the
back-edge (w, v) will be discovered.
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A4Q2: Course Prerequisites

» In most post-secondary programs, courses have
prerequisites.

» For example, you cannot take EECS 3101 until you have
passed EECS 2011.

» How can we represent such a system of dependencies?

» A natural choice is a directed graph.
L Each vertex represents a course

 Each directed edge represents a prerequisite

<> A directed edge from Course U to Course V means that Course U

must be taken before Course V.
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A4Q2: Course Prerequisites

» We also want to be able to find the information for a
particular course quickly.

» The course number provides a convenient key that can
be used to organize course records in a sorted map,
implemented as a binary search tree (cf. A3Q1).

» Thus it makes sense to represent courses using both a
sorted map (for efficient access) and a directed graph (to
represent dependencies).

» By storing a reference to the directed graph vertex for a
course in the sorted map, we can efficiently access
course dependencies.
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A4Q2: Course Prerequisites

Key: 2011

Value:

* Number: 2011

« Name: “Data Structures”
. Vertex:o\

Sorted Map
(K3, Va)

Directed Graph
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A4Q2: Course Prerequisites

» It is important that the course prerequisite graph be a
directed acyclic graph (DAG). Why?
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A4Q2: Course Prerequisites

» In this question, you are provided with a basic
implementation of a system to represent courses and
dependencies.

» Methods for adding courses and getting prerequisites
are provided.

» You need only write the method for adding a
prerequisite.

» This method will use a depth-first-search algorithm (also
provided) that can be used to prevent the addition of
prerequisites that introduce cycles.
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A4Q2: Implementation using net.datastructures

» We use the TreeMap class Key: 2011
to represent the sorted map Value:
*  Number: 2011
(Cf- A3Q1 ) « Name: “Data Structures”
Vertex:
Map
I AbstractMap | | SortedMapl
Sorted Map
A M
! bstractSortedMap (Ks,Vs)
T Entry
TreeMapl

I MapEntryl
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A4Q2: Implementation using net.datastructures

» We use the AdjacencyMapGraph class to represent the directed graph.

» This implementation uses ProbeHashMap, a linear probe hash table, to
represent the incoming and outgoing edges for each vertex.

Mapl
Directed Graph !
| Graphl | AbstractMap |
’ AbstractHashMap |
I AdjacencyMapGraph | | T |
I ProbeHashMapl
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Outline

» DFS Algorithm
» DFS Example
» DFS Applications
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Outcomes

» By understanding this lecture, you should be able to:

[ Label a graph according to the order in which vertices are
discovered, explored from and finished in a depth-first search.

[ Classify edges of the depth-first search as tree edges, back
edges, forward edges and cross edges

O Implement depth-first search

L Demonstrate simple applications of depth-first search
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