
Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 1 -

Graphs – Depth First Search

ORD

DFW

SFO

LAX

80
2

1743

1843

1233

337

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 2 -

Graph Search Algorithms

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 3 -

Outcomes

Ø By understanding this lecture, you should be able to:

q Label a graph according to the order in which vertices are
discovered, explored from and finished in a depth-first search.

q Classify edges of the depth-first search as tree edges, back
edges, forward edges and cross edges

q Implement depth-first search

q Demonstrate simple applications of depth-first search

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 4 -

Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 5 -

Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 6 -

Depth First Search (DFS)

Ø Idea:

q Continue searching “deeper” into the graph, until we get
stuck.

q If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

q Analogous to Euler tour for trees

Ø Used to help solve many graph problems, including

q Identifying nodes that are reachable from a specific node v

q Detecting cycles

q Extracting strongly connected components

q Topological sorts

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 7 -

Depth-First Search
Ø The DFS algorithm is

similar to a classic
strategy for exploring a
maze
q We mark each

intersection, corner and
dead end (vertex) visited

q We mark each corridor
(edge) traversed

q We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 8 -

Depth-First Search

Ø Explore every edge, starting from different vertices if necessary.

Ø As soon as vertex discovered, explore from it.

Ø Keep track of progress by colouring vertices:
q Black: undiscovered vertices

q Red: discovered, but not finished (still exploring from it)

q Gray: finished (Discovered everything reachable from it).

Graph (,) (directed or In undirectep :)t du G V E=

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 9 -

DFS Example on Undirected Graph

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A finished

A unexplored

unexplored edge

A being explored

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 10 -

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 11 -

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

for each vertex u∈V [G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 12 -

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 13 -

Properties of DFS

Property 1
DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2
The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u

DB

A

C

E

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 14 -

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

for each vertex u∈V [G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

total work
= θ(V)

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 15 -

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY

total work
= |Adj[v]|

v∈V
∑ = θ(E)

Thus running time = θ(V + E)
(assuming adjacency list structure)

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 16 -

Variants of Depth-First Search

Ø In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

Ø ‘Time’ is an integer that is incremented whenever a vertex changes state

q from unexplored to discovered

q from discovered to finished

Ø These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Graph (,) (directed or In undirectep :)t du G V E=

2 timestamps on each vertex:
 [] discovery time.
 [] finishing tim

Output

.

:

e
d v
f v

=

=
1 [] [] 2| |d v f v V£ < £

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 17 -

DFS Algorithm with Discovery and Finish Times

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

time ← 0
for each vertex u∈V [G]

if color[u] = BLACK //as yet unexplored
DFS-Visit(u)

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 18 -

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
time ← time +1
d[u]← time
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY
time ← time +1
f [u]← time

DFS Algorithm with Discovery and Finish Times

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 19 -

Other Variants of Depth-First Search

Ø The DFS Pattern can also be used to
q Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u]

q Label edges in the graph according to their role in the search

²Discovery tree edges, traversed to an undiscovered vertex

²Forward edges, traversed to a descendent vertex on the current
spanning tree

²Back edges, traversed to an ancestor vertex on the current
spanning tree

²Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 20 -

End of Lecture

March 27, 2018

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 21 -

Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 22 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Discovered
Not Finished

Stack
<node,# edges>

/

/

//

/

/

/

/

/

/

/

/

/

/

d f

Note: Stack is Last-In First-Out (LIFO)

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 23 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Discovered
Not Finished

Stack
<node,# edges>

s,0

/

1/

//

/

/

/

/

/

/

/

/

/

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 24 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,0
/

1/

/2/

/

/

/

/

/

/

/

/

/

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 25 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,0/

1/

/2/

3/

/

/

/

/

/

/

/

/

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 26 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,1
h,0

/

1/

/2/

3/

/

/

/

/

/

/

/

4/

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 27 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,1
h,1
k,0

/

1/

/2/

3/

/

/

/

/

/

/

5/

4/

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 28 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,1
h,1

Discovery tree Edge

Path on Stack /

1/

/2/

3/

/

/

/

/

/

/

5/6

4/

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 29 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,1/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 30 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,0

8/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 31 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,1

Cross Edge to Finished node: d[h]<d[i]

8/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 32 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,2

8/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 33 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,3
l,0

8/

1/

/2/

3/

/

/

/

/

/

9/

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 34 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,3
l,1

8/

1/

/2/

3/

/

/

/

/

/

9/

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 35 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,3

8/

1/

/2/

3/

/

/

/

/

/

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 36 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,0

8/

1/

/2/

3/

/

/

11/

/

/

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 37 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,0

8/

1/

/2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 38 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,1

Back Edge to node on Stack:

8/

1/

/2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 39 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2
m,0

8/

1/

/2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 40 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2
m,1

8/

1/

/2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 41 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2

8/

1/

/2/

3/

/

/

11/

12/

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 42 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4
g,1

8/

1/

/2/

3/

/

/

11/

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 43 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,4

8/

1/

/2/

3/

/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 44 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,5
f,0

8/

1/

/2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 45 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,5
f,1

8/

1/

/2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 46 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,2
i,5

8/

1/

/2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 47 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,28/19

1/

/2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 48 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
c,38/19

1/

/2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Forward Edge

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 49 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,1
8/19

1/

/2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 50 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

a,2
8/19

1/

/2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 51 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Discovered
Not Finished

Stack
<node,# edges>

8/19

1/

/2/20

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 52 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

d,0
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 53 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

d,1
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 54 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

d,2
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 55 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

d,3
e,08/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 56 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

d,3
e,18/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 57 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

d,3
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 58 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Discovered
Not Finished

Stack
<node,# edges>

8/19

1/

/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 59 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,3

Discovered
Not Finished

Stack
<node,# edges>

8/19

1/

/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 60 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Discovered
Not Finished

Stack
<node,# edges>

b,0
8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 61 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Discovered
Not Finished

Stack
<node,# edges>

b,1
8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 62 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Discovered
Not Finished

Stack
<node,# edges>

b,2
8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 63 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Discovered
Not Finished

Stack
<node,# edges>

b,3
8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 64 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Discovered
Not Finished

Stack
<node,# edges>

8/19

1/

25/262/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 65 -

DFS

s

Discovered
Not Finished

Stack
<node,# edges>

Finished!

Tree Edges
Back Edges

a

c

h

k

f

i

l

m

j

e

b

g
d

Cross Edges

8/19

1/27

25/262/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Forward Edges

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 66 -

Classification of Edges in DFS
1. Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if

v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in
a depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/2
6

2/20

3/19

17/1
8

21/2
4

11/1
6

12/1
5

13/1
4

9/10

5/6

4/7

22/2
3

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 67 -

Classification of Edges in DFS
1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.

Note that d[v] > d[u].

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.
Note that d[v] < d[u].

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
d[v] < d[u].

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/2
6

2/20

3/19

17/1
8

21/2
4

11/1
6

12/1
5

13/1
4

9/10

5/6

4/7

22/2
3

Classifying edges can help to identify
properties of the graph, e.g., a graph is
acyclic iff DFS yields no back edges.

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 68 -

DFS on Undirected Graphs

Ø In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

Ø Why?

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 69 -

DFS on Undirected Graphs
Ø Suppose that (u,v) is a forward edge or a

cross edge in a DFS of an undirected graph.

Ø (u,v) is a forward edge or a cross edge when v
is already Finished (grey) when accessed from
u.

Ø This means that all vertices reachable from v
have been explored.

Ø Since we are currently handling u, u must be red.

Ø Clearly v is reachable from u.

Ø Since the graph is undirected, u must also be
reachable from v.

Ø Thus u must already have been Finished: u
must be grey.

Ø Contradiction!

u

v

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 70 -

Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 71 -

DFS Application 1: Path Finding

DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path

colour[u] ← RED
push u onto stack
if u = z

return TRUE
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
if DFS-Path(v,z,stack)

return TRUE
colour [u]←GRAY
pop u from stack
return FALSE

Ø The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

Ø We use a stack to keep track of the current path

Ø If the destination vertex z is encountered, we return the path as the contents of
the stack

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 72 -

DFS Application 2: Cycle Finding

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = RED //back edge
return true

else if color[v] = BLACK
if DFS-Cycle(v)

return true
colour [u]←GRAY
return false

Ø The DFS pattern can be used to determine whether a graph is acyclic.

Ø If a back edge is encountered, we return true.

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 73 -

Why must DFS on a graph with a cycle
generate a back edge?

Ø Suppose that vertex s is in a connected
component S that contains a cycle C.

Ø Since all vertices in S are reachable from
s, they will all be visited by a DFS from s.

Ø Let v be the first vertex in C reached by a
DFS from s.

Ø There are two vertices u and w adjacent
to v on the cycle C.

Ø wlog, suppose u is explored first.

Ø Since w is reachable from u, w will
eventually be discovered.

Ø When exploring w’s adjacency list, the
back-edge (w, v) will be discovered.

s

v

u w

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 74 -

A4Q2: Course Prerequisites

Ø In most post-secondary programs, courses have
prerequisites.

Ø For example, you cannot take EECS 3101 until you have
passed EECS 2011.

Ø How can we represent such a system of dependencies?

Ø A natural choice is a directed graph.
q Each vertex represents a course

q Each directed edge represents a prerequisite

²A directed edge from Course U to Course V means that Course U
must be taken before Course V.

2011 3101

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 75 -

A4Q2: Course Prerequisites

Ø We also want to be able to find the information for a
particular course quickly.

Ø The course number provides a convenient key that can
be used to organize course records in a sorted map,
implemented as a binary search tree (cf. A3Q1).

Ø Thus it makes sense to represent courses using both a
sorted map (for efficient access) and a directed graph (to
represent dependencies).

Ø By storing a reference to the directed graph vertex for a
course in the sorted map, we can efficiently access
course dependencies.

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 76 -

A4Q2: Course Prerequisites

Sorted Map Directed Graph

Key: 2011
Value:
• Number: 2011
• Name: “Data Structures”
• Vertex:

2011 3101
(K1,V1)

(K2,V2)

(K3,V3)

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 77 -

A4Q2: Course Prerequisites

Ø It is important that the course prerequisite graph be a
directed acyclic graph (DAG). Why?

2011 3101

3121

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 78 -

A4Q2: Course Prerequisites

Ø In this question, you are provided with a basic
implementation of a system to represent courses and
dependencies.

Ø Methods for adding courses and getting prerequisites
are provided.

Ø You need only write the method for adding a
prerequisite.

Ø This method will use a depth-first-search algorithm (also
provided) that can be used to prevent the addition of
prerequisites that introduce cycles.

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder

- 79 -

A4Q2: Implementation using net.datastructures

Ø We use the TreeMap class
to represent the sorted map
(cf. A3Q1).

Sorted Map

Key: 2011
Value:
• Number: 2011
• Name: “Data Structures”
• Vertex:

(K1,V1)

(K2,V2)

(K3,V3)

Map

AbstractSortedMap

AbstractMap SortedMap

TreeMap

Entry

MapEntry

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 80 -

A4Q2: Implementation using net.datastructures
Ø We use the AdjacencyMapGraph class to represent the directed graph.

Ø This implementation uses ProbeHashMap, a linear probe hash table, to
represent the incoming and outgoing edges for each vertex.

Directed Graph

2011 3101Graph

AdjacencyMapGraph

Map

AbstractHashMap

AbstractMap

ProbeHashMap

Last Updated March 27th, 2018
EECS 2011
Prof. J. Elder - 81 -

Outline

Ø DFS Algorithm

Ø DFS Example

Ø DFS Applications

Last Updated March 27th, 2018
EECS 2011

Prof. J. Elder
- 82 -

Outcomes

Ø By understanding this lecture, you should be able to:

q Label a graph according to the order in which vertices are
discovered, explored from and finished in a depth-first search.

q Classify edges of the depth-first search as tree edges, back
edges, forward edges and cross edges

q Implement depth-first search

q Demonstrate simple applications of depth-first search

