Graphs — Depth First Search

EECS 2011
YORKRBI 1. Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

T i —
- 1 \(‘ 4\"\“ —
| & Forest .)
: B \ Manor(Park (pd)
BT Horth York, 2 |
P est Don YOrk Cemetery '7‘\ 1
o s = B Parklands §) -
g “ \ ‘
Thistletown ’\(%. ™, . 5
North Klp\lr;Q_Park 4 J '
‘\‘. g\ﬂﬂ‘mﬁ}ﬂ['
\

\
Earl Bales
Park

Brookdale
Park

Edwards
Gardens.

)
f
il

|
Sunnybrook Park |,
4 Creex
\

Erne:
* Thompson
Seton Park Tayior
RY Burgess

Creek
RZ

g
hed

i ol n
icosoft Cof. sndor its suppliers. All rights

R
Copyright ©2004 Mi

YORK

UNIVERSITE
UNIVERSITY

EECS 2011
Prof. J. Elder

Last Updated March 27t, 2018

Outcomes

» By understanding this lecture, you should be able to:

[Label a graph according to the order in which vertices are
discovered, explored from and finished in a depth-first search.

[Classify edges of the depth-first search as tree edges, back
edges, forward edges and cross edges

O Implement depth-first search

L Demonstrate simple applications of depth-first search

EECS 2011
YORKRBI _3- Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

» DFS Algorithm
» DFS Example
» DFS Applications

YORK ' EECS 2011

'''''''''' Prof. J. Elder

IIIIIIIIII

Outline

Last Updated March 27t 2018

» DFS Algorithm
» DFS Example
» DFS Applications

YORK ' EECS 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

Last Updated March 27t 2018

Depth First Search (DFS)

> |ldea:

U Continue searching “deeper” into the graph, until we get
stuck.

U If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

[Analogous to Euler tour for trees

» Used to help solve many graph problems, including
O Identifying nodes that are reachable from a specific node v
U Detecting cycles
U Extracting strongly connected components

U Topological sorts

EECS 2011
YORKRBI _6- Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

1 We mark each
Intersection, corner and
dead end (vertex) visited

 We mark each corridor
(edge) traversed

L We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

YORK ' EECS 2011

'''''''''' Prof. J. Elder

IIIIIIIIII

el

Last Updated March 27t 2018

Depth-First Search

Input: Graph & = (V,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
» As soon as vertex discovered, explore from it.

» Keep track of progress by colouring vertices:
4 Black: undiscovered vertices
O Red: discovered, but not finished (still exploring from it)

O Gray: finished (Discovered everything reachable from it).

EECS 2011
YORKRBI _8- Last Updated March 27t, 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

DFS Example on Undirected Graph

unexplored

being explored

finished

unexplored edge

discovery edge

|| oce

back edge

EECS 2011
YORKRBI _9- Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Example (cont.)

EECS 2011
YORKRBI _10- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G]
color[u] = BLACK //initialize vertex
for each vertex u e V[G]
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

EECS 2011
YORKRBI 1. Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
If color[v] = BLACK

DFS-Visit(v) /’W

colour[u]l < GRAY

EECS 2011
YORKRBI 12- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

The discovery edges
labeled by DFS-Visit(u) :
form a spanning tree of the |

connected component of u

EECS 2011
YORKRBI 13- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G] b
color{u] = BLACK //initialize vertex ~\ total work
for each vertex u e V[G]) = 6(V)
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

EECS 2011
YORKRBI 14- Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //explore edge (u,v)

if color{v] = BLACK | fotal w:;lf]
DFS-Visit(v) = VEZVI jlv1|=6(E)
colour[u] < GRAY ~

/
Thus running time = 6(V + E) \\
(assuming adjacency list structure)

EECS 2011
YORKRBI _15.- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

O from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph & = (V,E) (directed or undirected)

Output: 2 timestamps on each vertex:

d[v] = discovery time.
f[v]= finishing time. 1<dvl<flv]<2|V|

EECS 2011
YORKRBI _16- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u € V[G]
color[u] = BLACK //initialize vertex
time < 0
for each vertex u € V[G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u) \%' .
>/ / - \
YORSKE ' =ECS 20T -17 - Last Updated March 27t, 2018

Prof. J. Elder

IIIIIIIIII

DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
time « time +1
d[u] « time
for each v € Adj[u] //explore edge (u,v)

if color[v] = BLACK /ﬁ

DFS-Visit(v)
colour[u]l < GRAY
time « time + 1
flu] < time
YORSI<E ' =ECS 20T -18 - Last Updated March 27t 2018

Prof. J. Elder

IIIIIIIIII

Other Variants of Depth-First Search

» The DFS Pattern can also be used to

L Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list T1[u]

[Label edges in the graph according to their role in the search
< Discovery tree edges, traversed to an undiscovered vertex

< Forward edges, traversed to a descendent vertex on the current
spanning tree

<> , traversed to an ancestor vertex on the current
spanning tree

<> Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

EECS 2011
YORKRBI 19- Last Updated March 27, 2018
“““““““““ = Prof. J. Elder

IIIIIIIIII

End of Lecture

March 27, 2018

EECS 2011
YORKRBI _20- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

» DFS Algorithm
» DFS Example
» DFS Applications

YORK ' EECS 2011 0.

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Last Updated March 27t 2018

Discovered
Not Finished

Stack
<node,# edges>

/

Last Updated March 27t 2018

DFS Discovered
Not Finished
Stack
<node,# edges>

~~

s,0

/

/ Last Updated March 27t 2018

DFS Discovered
Not Finished

1/

Stack

<node,# edges>

/

/ Last Updated March 27t 2018

DFS

1/

/

Discovered

Not Finished
Stack
<node,# edges>
D/
el /
V.
J7 1 e,0
a,l
s, 1
m|

Last Updated March 27t 2018

DFS Discovered

Not Finished
1 Stack
<node,# edges>
D| /
el /
g
\ h,0
I)¢
a,l
S, 1
m[J

/

/ Last Updated March 27t 2018

3/

4/

YORK

IIIIIIIIII
IIIIIIIIII

EECS 2011
Prof. J. Elder

DFS

1/

Discovered
Not Finished
Stack
<node,# edges>

= A
S

9
S 3

\9
N
r

m\’QDO

9
\ 3

Last Updated March 27t 2018

DFS Discovered
Not Finished
1] Stack

<node,# edges>

<
=
\9»

\9
N BY
r

m\’QDO

9
\ 3
P

5/6

- 28 1 / Last Updated March 27, 2018

3/

DFS

1/

5/6

Discovered
Not Finished
Stack
<node,# edges>

9
\
o

w1
9

\ 3

P

-29-]

Last Updated March 27t 2018

DFS Discovered
Not Finished
1/ Stack
<node,# edges>

3/

47

5/6

- 30 1 / Last Updated March 27t, 2018

DFS Discovered

Cross Edge to Finished node: d[hkd[i] Not Finished
' 1/ Stack

<node,# edges>

5/6

- 31 1 / Last Updated March 27t, 2018

DFS Discovered
Not Finished
1/ Stack
<node,# edges>

3/

47

5/6

- 32 1 / Last Updated March 27t, 2018

3/

47

® —
YORKQ T

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished
Stack

<node,# edges>

9/

1,0
N
L7 T]c,2
a,l
s, 1

Last Updated March 27t 2018

3/

47

® —
YORKQ T

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished
Stack

<node,# edges>

9/

| 1,1
: 1.3
il
a,l
s, 1

Last Updated March 27t 2018

3/

47

DFS

1/

5/6

Discovered
Not Finished
Stack
<node,# edges>

9/10

Last Updated March 27t 2018

DFS

1/

11/

5/6

Discovered
Not Finished
Stack
<node,# edges>

9/10

el /
g,0
oo |i4
I Jle2
a,l
s, 1

m|

Last Updated March 27t 2018

DFS

1/

11/

5/6

Discovered
Not Finished
Stack
<node,# edges>

J,0
g1
1,4
C,2
a,l
s, 1

9/10

Last Updated March 27t 2018

®
YORK ' EECS 2011 k

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

11/

5/6

=
L

Discovered
Not Finished
Stack

, <node,# edges>

[]
-119/10

Al
g1
1,4
c,2
a,l
s, 1

Last Updated March 27t 2018

DFS Discovered

Not Finished
1/ Stack
<node,# edges>
D/
Ll Im,0
11/ = j92
g1

1,4

V.
]l 12/ c,2
a,l
NV
3

13/

- 39 1 9/10 Last Updated March 27t, 2018

DFS Discovered

Not Finished
1/ Stack
<node,# edges>
D/
CL) Im,1
11/ = j92
g1

1,4

V.
]l 12/ c,2
a,l
NV
3

13/

-40-]19/10 Last Updated March 27, 2018

DFS

1/

Discovered
Not Finished
Stack
<node,# edges>

J,2
g1
1,4
c,2
a,l
s, 1

Last Updated March 27t 2018

DFS

1/

Discovered
Not Finished
Stack

<node,# edges>

el
g,1
4
J12/15 c,2
a,l
s, 1

13/14

Last Updated March 27t 2018

®
YORK ' EECS 2011 k

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS

5/6

Discovered
Not Finished
Stack
<node,# edges>

12/15 C,2

13/14

Last Updated March 27t 2018

DFS Discovered
Not Finished
Stack
<node,# edges>

£,0
: 1,5
J12/15 c,2
a,l
s, 1

13/14

Last Updated March 27t 2018

DFS Discovered
Not Finished
Stack
<node,# edges>

f,1
: 1,5
J12/15 c,2
a,l
s, 1

13/14

Last Updated March 27t 2018

DFS Discovered
Not Finished
Stack
<node,# edges>

/

: 1,5
12/15 C,2

a,l

s, 1

13/14
_F| 5/6
EECS 2011 k‘ - ®
YORSK ' Prof. J. Elder - 46 -1 9/10 Last Updated March 27t, 2018

UUUUUUUUUU

DFS Discovered

Not Finished
Stack

<node,# edges>

/
3/]
12/15 C,2
a,l
417 891

® m/13/14
- /
(]

EECS 2011 k‘ -
YORK ' -47 -1 9/10 Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

UUUUUUUUUU

DFS

Forward Edge

Discovered
Not Finished
Stack
<node,# edges>

/

12/15 C,3
a,l
s, 1

@ —
YORK ' EECS 2011 k _48‘_1 910

““““““““““ Prof. J. Elder

IIIIIIIIII

® m/13/14
e /

Last Updated March 27t 2018

DFS Discovered

Not Finished
Stack

<node,# edges>

/
3/19
CO\
12/15
a,l
417 s, 1

® m/13/14
- /

YORK EECS 2011 k‘ - ®
J - 49 1 9/10 Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
Stack

<node,# edges>

/
3119
CO\
72715
a,2
417 s, 1

® m/13/14
- /

YORK EECS 2011 k‘ - ®
' -50 —1 9/10 Last Updated March 27t 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered
Not Finished
Stack
<node,# edges>

2120
/
319
ce
\‘
12/15
417 s, 1

® m/13/14
- /
(]

EECS 2011 k\‘; -
YORK ' - 51 —1 9/10 Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
1/ Stack
. — <node,# edges>
a‘
/
3/19
C‘\‘
. 12/15
/‘ 1‘7 d’O
417 |h® S,2

® m/13/14
- /
(]

EECS 2011 k\‘; -
YORK ' -52 —1 9/10 Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
1/ Stack
s — <node,# edges>
a‘
/
3/19
C‘\‘
. 12/15
/‘ 1‘7 djl
417 |h® S,2

® m/13/14
- /

YORK EECS 2011 k‘ - ®
' - 53 —1 9/10 Last Updated March 27t 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
1/ Stack
. — <node,# edges>
a‘
/
3/19
C‘\‘
. 12/15
/‘ 1‘7 d’2
417 |h® S,2

® m/13/14
- /
(]

EECS 2011 k\‘; -
YORK ' - 54 —1 9/10 Last Updated March 27t, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
Stack
<node,# edges>
22/
3/19
C
Jiziig | e,0
d,3
4/7 892
13/14
5/6
k®
YORKQ Ei?izgrger -55-][9/10 Last Updated March 27, 2018

IIIIIIIIII

DFS Discovered

Not Finished
Stack
<node,# edges>
22/
3/19
C
Jiziig | e, 1
d,3
4/7 892
13/14
5/6
k®
YORK [Ei?izgrger -56-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

DFS Discovered
Not Finished
Stack
<node,# edges>

22/23
3/19
C
J112/15
d,3
4/7 892
13/14
5/6
EECS 2011 k‘ e
YORK [Prof. J. Elder -57-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

DFS Discovered

Not Finished
Stack
<node,# edges>
2/20 D| [/
a
d 21/24 C|22/23
S19 1716 &
j12/15
S,2
mj|13/14
5/6
k®
YORK [E,i?izgrger -58-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

DFS Discovered

Not Finished
Stack
<node,# edges>
2/20 D| |/
a
d 21/24 C|22/23
S19 1716 ' &
j12/15
S,3
m\13/14
5/6
k®
YORK [Ei?izgrger -59-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

3/19

2/20

k®
YORK ' EECS 2011

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

5/6

-60-]

9/10

DFS
1]
a: 25]
dl21/24
11/16] '@ &

e22/23

Discovered
Not Finished
Stack
<node,# edges>

Jl12/15

13/14

Last Updated March 27t, 2018

3/19

2/20

k®
YORK ' EECS 2011

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

5/6

-61-]

9/10

DFS
1]
a: 25]
dl21/24
11/16] g

e22/23

Discovered
Not Finished
Stack
<node,# edges>

Jl12/15

13/14

Last Updated March 27t, 2018

DFS Discovered
Not Finished
Stack
<node,# edges>

22/23
3/19
C
J112/15
b,2
4/7 594
13/14
5/6
EECS 2011 k‘ e
YORK [Prof. J. Elder -62-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

DFS Discovered
Not Finished
Stack
<node,# edges>

22/23
3/19
C
J112/15
b,3
4/7 594
13/14
5/6
EECS 2011 k‘ e
YORK [Prof. J. Elder -63-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

DFS Discovered
Not Finished
Stack
<node,# edges>

22/23
3/19
C
J112/15
4/7 594
13/14
5/6
EECS 2011 k‘ e
YORK [Prof. J. Elder -64-][9/10 Last Updated March 27t, 2018

IIIIIIIIII

—» Tree Edges DFS Discovered
— Back Edges Not Finished

1/27] Finished! Stack
<node,# edges>

—> Forward Edges

—> (Cross Edges

2/20
d

e22/23

3/19

Jl12/15

417

13/14

o 5/6
YORKHI EEC82011k e

“““““““““ Prof. J. Elder

IIIIIIIIII

- 65 1 9/10 Last Updated March 27th, 2018

Classification of Edges in DFS

1. T'ree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in
a depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

1127
9
o |25/2
/‘Y
S5 9 [2272
— I
11| @
5 g

N
- -
\
L]
C\‘

7/
{ 8

12/1

5

- ./
i L]
13/1
2P 5/6 / mo4
EECS 2011 .

YORK [- 66 - k 188€Updated March 27, 2018

Prof. J. Elder

IIIIIIIIII

Classification of Edges in DFS

1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.
Note that dfv] > d[u].

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.
Note that dfv] < d[u].

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
dfv] < d[u].

1/27

Classifying edges can help to identify 2/20 .
properties of the graph, e.g., a graph is 7 /‘\
N
o) . .

acyclic iff DFS yields no back edges.

EECS 2011
YORKRBI _67- Last Updated March 27t, 2018
“““““““““ = Prof. J. Elder

IIIIIIIIII

DFS on Undirected Graphs

» |In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

> Why?

EECS 2011
YORKRBI _68- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS on Undirected Graphs

> Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

> (u,v) is a forward edge or a cross edge when v :
is already Finished (grey) when accessed from -
u.
u

» This means that all vertices reachable from v
have been explored.

» Since we are currently handling u, u must be red. \v

» Clearly v is reachable from u. /

» Since the graph is undirected, u must also be . .
reachable from v.

» Thus u must already have been Finished: u
must be grey.

» Contradiction!

YORSKE ' =ECS 2011 - 69 - Last Updated March 27t, 2018

Prof. J. Elder

IIIIIIIIII

» DFS Algorithm
» DFS Example
» DFS Applications

YORK ' EECS 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

-70 -

Last Updated March 27t 2018

DFS Application 1: Path Finding

» The DFS pattern can be used to find a path between two given vertices u# and z,
if one exists

» We use a stack to keep track of the current path

> If the destination vertex z is encountered, we return the path as the contents of

the stack DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path
colour[u] « RED
push u onto stack
ifu=z
return TRUE
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
if DFS-Path(v, z,stack)
return TRUE

colour[u]l « GRAY
pop u from stack
return FALSE

EECS 2011

- - th
Prof. J. Elder 71 Last Updated March 27, 2018

DFS Application 2: Cycle Finding

» The DFS pattern can be used to determine whether a graph is acyclic.

» If a back edge is encountered, we return true.

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
if color[v] = RED //back edge
return true
else if color[v] = BLACK
if DFS-Cycle(v)
return true
colour[u] <« GRAY
return false

EECS 2011
YORKRBI _72- Last Updated March 27, 2018
“““““““““ = Prof. J. Elder

IIIIIIIIII

Why must DFS on a graph with a cycle
generate a back edge?

» Suppose that vertex s is in a connected
component S that contains a cycle C. @

» Since all vertices in S are reachable from
S, they will all be visited by a DFS from s.

> Let v be the first vertex in C reached by a
DFS from s.

» There are two vertices u and w adjacent
to v on the cycle C.

» wlog, suppose u is explored first.

» Since wis reachable from u, w will
eventually be discovered.

» When exploring w's adjacency list, the
back-edge (w, v) will be discovered.

EECS 2011
YORKRBI _73- Last Updated March 27, 2018
“““““““““ Prof. J. Elder

IIIIIIIIII

A4Q2: Course Prerequisites

» In most post-secondary programs, courses have
prerequisites.

» For example, you cannot take EECS 3101 until you have
passed EECS 2011.

» How can we represent such a system of dependencies?

» A natural choice is a directed graph.
L Each vertex represents a course

 Each directed edge represents a prerequisite

<> A directed edge from Course U to Course V means that Course U

must be taken before Course V.

EECS 2011
YORKRBI _74.- Last Updated March 27t, 2018

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

A4Q2: Course Prerequisites

» We also want to be able to find the information for a
particular course quickly.

» The course number provides a convenient key that can
be used to organize course records in a sorted map,
implemented as a binary search tree (cf. A3Q1).

» Thus it makes sense to represent courses using both a
sorted map (for efficient access) and a directed graph (to
represent dependencies).

» By storing a reference to the directed graph vertex for a
course in the sorted map, we can efficiently access
course dependencies.

EECS 2011
YORKRBI _75.- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

A4Q2: Course Prerequisites

Key: 2011

Value:

* Number: 2011

« Name: “Data Structures”
. Vertex:o\

Sorted Map
(K3, Va)

Directed Graph

EECS 2011
YORKRBI _76.- Last Updated March 27, 2018
“““““““““ = Prof. J. Elder

IIIIIIIIII

A4Q2: Course Prerequisites

» It is important that the course prerequisite graph be a
directed acyclic graph (DAG). Why?

EECS 2011
YORKRBI _77- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

A4Q2: Course Prerequisites

» In this question, you are provided with a basic
implementation of a system to represent courses and
dependencies.

» Methods for adding courses and getting prerequisites
are provided.

» You need only write the method for adding a
prerequisite.

» This method will use a depth-first-search algorithm (also
provided) that can be used to prevent the addition of
prerequisites that introduce cycles.

EECS 2011
YORKRBI _78.- Last Updated March 27, 2018
“““““““““ Prof. J. Elder

IIIIIIIIII

A4Q2: Implementation using net.datastructures

» We use the TreeMap class Key: 2011
to represent the sorted map Value:
* Number: 2011
(Cf- A3Q1) « Name: “Data Structures”
Vertex:
Map
I AbstractMap | | SortedMapl
Sorted Map
A M
! bstractSortedMap (Ks,Vs)
T Entry
TreeMapl

I MapEntryl

EECS 2011
YORKRBI _79.- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

A4Q2: Implementation using net.datastructures

» We use the AdjacencyMapGraph class to represent the directed graph.

» This implementation uses ProbeHashMap, a linear probe hash table, to
represent the incoming and outgoing edges for each vertex.

Mapl
Directed Graph !
| Graphl | AbstractMap |
’ AbstractHashMap |
I AdjacencyMapGraph | | T |
I ProbeHashMapl
YORSKE ' =ECS 2011 - 80 - Last Updated March 27t, 2018

Prof. J. Elder

IIIIIIIIII

Outline

» DFS Algorithm
» DFS Example
» DFS Applications

YORK ' EECS 2011 _81-

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Last Updated March 27t 2018

Outcomes

» By understanding this lecture, you should be able to:

[Label a graph according to the order in which vertices are
discovered, explored from and finished in a depth-first search.

[Classify edges of the depth-first search as tree edges, back
edges, forward edges and cross edges

O Implement depth-first search

L Demonstrate simple applications of depth-first search

EECS 2011
YORKRBI _82- Last Updated March 27, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

